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The conventional method for estimating Lyapunov spectra can give spurious positive Lyapunov exponents
when applied to random time series. We analyze this phenomenon by using a simple stochastic model which
produces completely random time series with no temporal correlation. We show that the possible estimation of
spurious positive Lyapunov exponents is due to the statistical nature and finiteness of data. We also derive an
upper bound of the largest Lyapunov exponent for the model.@S1063-651X~96!05608-5#

PACS number~s!: 05.45.1b, 05.40.1j, 02.50.2r

In studying the mechanism that generates a fluctuating
time series, it is important to determine whether or not the
series is produced from a deterministic system with chaotic
dynamics and, if it is, to characterize the dynamics. The
Lyapunov spectrum gives information useful for characteriz-
ing orbital instability of chaotic dynamics, and in recent
years it has been increasingly applied to time series analysis,
along with various methods concerning it@1#. When we want
to estimate the Lyapunov spectrum from a given time series
we can use the customary method consisting of the phase
space reconstruction via embedding and the local function
approximation@2–4#. Knowing how this method behaves
when it is applied to a chaotic time series contaminated by
noise or applied~improperly! to random time series that are
not chaotic would extend our understanding of the method
and help to ensure that it is used properly.

Ikeguchi and Aihara@5# have reported that naive applica-
tion of the method to random time series~time-interval data
of g-ray emission by cobalt! can, as expected, give spurious
positive Lyapunov exponents. Since their result was based
on numerical experiments, here we show analytically what
kind of results we would obtain when applying the method
blindly to a completely random time series.

It should be noted that the case in which the time series is
completely random is itself of little practical importance be-
cause we can easily discriminate such a series from those
resulting from deterministic chaos if we follow appropriate
procedures, such as the false-nearest-neighbor test@6# and
tests of determinism@7,8#. Thus we intend to discuss not the
practical risk of misinterpretation of completely random time
series as chaotic ones but a basic property of the method in
an analytically tractable way.

We treat the following model: Consider a series of inde-
pendent and identically distributed~iid! random variables

$Xn% with a probability density function which is uniform on
a unit circleR5R/Z. We regard a realization of the series as
an output time series from a fictitious deterministic dynami-
cal system and analyze it by blindly applying the method of
estimating the Lyapunov spectra.

The method treated in this report follows the processes of
embedding time series with delay coordinates and of recon-
structing dynamics as local linear maps by the least-mean-
square approximation@2–4#. Our model has the advantage of
simplicity, because the neighborhoods of all points in delay
coordinates have exactly the same statistical properties. We

FIG. 1. Lyapunov spectra for various values ofL and N
(m5100, r50.01). For each value ofN, the results with the fol-
lowing values ofL are plotted: 10, 20, 50, 100, 200, 500, 1000,
2000, 5000, and 10 000.
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assume that the local linear maps are constructed from neigh-
boringm data which are independently and uniformly dis-
tributed within a sphere of radiusr in N-dimensional delay
coordinates. Since the time series is random, the resulting
maps are also random. From a sequence of the random ma-
trices $Pi% describing the random mappings we formally
construct the Oseledec matrix

L~L !5S F)
i51

L

Pi GT•)
i51

L

Pi D 1/2L, ~1!

where) iPi5PLPL21 . . .P2P1. As in the case of the mul-
tiplicative ergodic theorem, we expect that the limit of
L(L) asL→` exists for each sequence of the random ma-
trices. The logarithm of the eigenvalues of the Oseledec ma-
trix whenL→` are denotedl1>l2> . . .>lN . We regard
l i as the global Lyapunov exponents of the model. Practi-
cally, the limitL→` is evaluated by using sufficiently large
L. We use the succesive decomposition@4,9# for the evalua-
tion of the eigenvalues.

Figure 1 shows thei th largest Lyapunov exponentl i ver-
sus i for various values ofL and the embedding dimension
N. The results are affected very little by the values ofL
between 10 and 10 000. Figures 2~a! and 2~b! show the over-
all dependence of the largest Lyapunov exponentl1 on N
and onm. For a fixedr, l1 is an increasing function ofN
and a decreasing function ofm. The details of the simulation
are given elsewhere@10#.

Eckmann and Ruelle @3# suggest the use of
min(2N, N14) for the value ofm, and Fig. 3 shows the result
of the computer simulation for evaluating the use of this
value. This result is very similar to that obtained with actual
cobalt data@5#.

The largest Lyapunov exponent is related to the averaged
expansion rate of vectors by the random maps$Pi%. The
averaged expansion ratee of Pi can be estimated to be

e5S s22
1

N
11D 1/2, ~2!

where s2 is the variance of each component of the local
linear predictor@10#. The derivation of Eq.~2! will be given
elsewhere. Shown in Fig. 2 by solid lines are the values of
ln e, that is, the values of the largest Lyapunov exponent
estimated on the basis of Eq.~2!. It is estimated to be nega-
tive for largem since s2 tends to be zero asm→`, as
expected from its statistical property. In practical situations,
however, we cannot take the limitm→` because the amount
of data available is always finite. It can be shown that the
principal correction term to this estimation is negative, and
hence this estimation gives an upper bound of the largest
Lyapunov exponent of the model.

In general, if the available data are of finite length, what
we can say about whether or not it is chaotic must take a
form of statistical rather than deterministic statements.
Pecora, Carroll, and Heagy@11# have discussed a framework
for statistical statements on chaotic time series in terms of
mappings relating two data sets. As for the estimation of
Lyapunov spectra our result gives an upper bound of the
largest Lyapunov exponent which can be expected solely by
the randomness of time series.

Our result has a direct practical application of estimating
an upper bound of the largest Lyapunov exponent on
random-shuffled surrogate data@12#. Moreover, the result
suggests that when random contamination may be added to
experimentally obtained chaotic time series, the Lyapunov
spectrum analysis should be applied very carefully to avoid
spurious estimation of positive Lyapunov exponents as evi-
dences of deterministic chaos.
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University of Tokyo, for their helpful comments.

FIG. 2. Maximal Lyapunov exponentl1: ~a! versus the embed-
ding dimensionN while m is fixed at 100, and~b! versus the num-
ber of neighboring datam while N is fixed at 5. Circles represent
the simulation result and lines represent the result calculated from
Eq. ~2!. r50.01 andL510 000 for both cases.

FIG. 3. Lyapunov spectra for various values ofL andN @the
total number of data is fixed to be 104, m5min(2N, N14)#. For
each value ofN, the results with the following values ofL are
plotted: 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, and 10 000.
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